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The properties of the high-field polynomials L, (u), where u = exp[—4J/(kg T)], are
investigated for the Bethe approximation of the spin § Ising model on a lattice which
has a coordination number ¢. (The polynomials L, (u) are essentially lattice gas
analogues of the Mayer cluster integrals b, (7') for a continuum gas.) In particular, a
contour integral representation for L,(u) is established by applying the Lagrange
reversion theorem to the implicit equation of state for the Bethe approximation.
Various saddle-point methods are then used to analyse the behaviour of the integral
representation as n—oo0. In this manner, asymptotic expansions for L,(u) are
obtained which are wuniformly valid in the intervals 0 <u < wu, and u, <wu <1,
where u, = [(0—1)/(0+1)]* is the critical value of the variable u, ¢ = (¢—1) and
o> 1. These expansions 1nvolve the Airy function Ai (z) and its first derivative. The
high-field polynomial L, (u) is found to have a trivial zero at « = 0, and n— 1 simple
non-trivial zeros {u,(o,n); v =1, 2, ..., n— 1} which are all located in the real interval
u, < u < 1. An agymptotic expansion for u,(c, n) in powers of n7% is derived from the
uniform asymptotic representation for L,(u) which is valid in the interval u, <
u < 1. Itis also shown that the limiting density of the zeros {u, (0' n);v=12..n—1}
as n— o0 is given by the simple formula
plo,w) = n(21) o + 1) w™ (w—ue )i (1 —u)

where u, < u < 1. Finally, the asymptotic properties of the Bethe polynomial L, (u)
are determined in the mean-field limit ¢ oo and J -0 with ¢J = J,, held constant.
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572 G. 8. Joyce and S. S. Mahal

1. Introduction

Consider the spin 1 Ising model of a ferromagnet on a d-dimensional lattice 2, with
N sites. (For reviews of the Ising model see Domb (1960, 1974).) The hamiltonian for
this system is defined to be

N
H=—JXo,0,—myBY (1.1)
(27) i=1
where the first summation is over all nearest-neighbour pairs (ij) in the lattice ,, B
is the magnetic field, o; = £ 1 and J, m, are positive constants. In the thermodynamic
limit N— co we can write the free energy per spin g(7', B) of the Ising model as

—(kgT)'g(T,B) = lim _lanN(T,B), (1.2)
N—»OON
where ZyT.B)y= ¥ ... X exp[—/(kgT)] (1.3)

o=%1 ony=+1

is the partition function.
It is well known (Domb 1960 ; Sykes et al. 1965) that the free energy g(7', B) can be
expanded as a high-field series in the form

(e 1) (T, B) = —YgInu—tln ut 3 Ly (u) o, (1.4)

n-1
where u=-exp[—4J/(kgT)], (1.5)
= expl—2my B/ (I T)], (1.6)

and ¢ is the coordination number of the lattice €,. The coefficient L,(u) is a
polynomial of degree jng in the variable u except when n and ¢ are both odd. (For
this special case L, (u) is a polynomial of degree ng in the variable uz.) We readily see
from (1.4) that the magnetization per spin of the Ising model

m=—(3g/0B)y. (1.7)

also has a high-field series representation

m/my=1—2 3 nl,(u)u". (1.8)
n=1

The high-field polynomials L,(«) have been determined for reasonably large values
of » on various two- and three-dimensional lattices by using graph-theoretic methods
(Sykes et al. 1965, 1973 a—d). If the Ising model is interpreted as a model of a lattice
gas (Lee & Yang 1952) it is found that, apart from a factor of «"%2, the polynomial
L,(u) is a lattice analogue of the Mayer cluster integral b,(7") which occurs in the
activity expansions for the pressure and density of an imperfect gas.

The asymptotic properties of L,(u) as n— oo are of particular importance in the
theories of condensation and critical point phenomena. For example, the behaviour
of L,(u,) as n—> o0, where u, is the critical value of the variable u, essentially
determines the shape of the critical isotherm for the Ising model (Gaunt et al. 1964 ;
Gaunt 1967 ; Gaunt & Sykes 1972) . When u < u, the asymptotic properties of L, (u)
can be used, at least in principle, to investigate the behaviour of the free energy in
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the neighbourhood of the phase boundary x4 = 1 (Fisher 1967; Domb & Guttmann
1970; Domb 1976). Unfortunately, no exact asymptotic analysis of L,(u) has yet
been carried out for d > 1.
For the one-dimensional spin { Ising model it has been shown (Bessis et al. 1976;
Joyce 1990) that
nL,(u) = uPL9(1—2u), (1.9)

where P (x) denotes a Jacobi polynomial of degree n. It follows from this result
and the theory of orthogonal polynomials (Szegt 1939) that w 'L, («) has n — 1 simple
zeros {u,(n);v=1,2,...,n—1} which all lie in the interval 0 <u < 1. (For
convenience, the zeros u,(n) are arranged in ascending order with u,(n) < u,,,(n) for
v=12,...,n—2.) Joyce (1990) also established uniform asymptotic expansions for
L, (u), which are valid as n—+ c0 with 0 < » < 1, by applying standard techniques to
the formula (1.9). These results were then used to derive asymptotic representations
for the zeros u,(n). In particular, it was found that

R R 1 o PR MR | W S S | ATy
v ~ .71,11)+ 2 ( + ]1,11 .71,1/)+"~ > (110)

2n 12n% 72074 20160n°
Jow . Jb Jo
— )~ 11—l SO (942 2 (2 12— 294 1.11
uv(n V) 4n2+48n4( +.70,v)+2880n6( +9]0,V JO,V)+ ) ( )

as n—> 00, with v fixed, where j, , denotes the vth zero of the Bessel function J,(z).

Our main aim in the present paper is to investigate the exact asymptotic
properties of the high-field polynomial L,(u) for the Bethe approximation (Bethe
1935) of the spin 3 Ising model on a lattice £, with a coordination number ¢. In the
first stage of the analysis a contour integral representation for L,(u) is derived by
applying the Lagrange reversion theorem (Copson 1935) to the implicit equation of
state for the Bethe approximation. Next the contour integral for L,(u) is evaluated
asymptotically for large » by using the standard saddle-point method (see Dingle
1973). Hence we obtain a basic asymptotic expansion for L, () which is valid as
n—> o0, provided that « is fixed in the interval 0 < u < u,, and ¢ > 2.

The asymptotic expansion for L, (u) breaks down completely as w—~u,— because
there are two saddle points which become coincident when » = u,. In §4 we overcome
this problem by following the powerful modification of the saddle-point method
developed by Chester et al. (1957). This procedure yields an asymptotic expansion for
L, (u), in terms of the Airy function Ai (z) and its first derivative, which is uniformly
valid in the interval 0 <u < u,. In §5 we obtain a similar uniform asymptotic
expansion for L, (u) which is valid in the interval u, < u < 1. It is also shown that the
dominant asymptotic behaviour of L, (u) as n— 00 and u—> 1+ is described by the
formula

Ly(w) ~ (=1)" ' n~t J (o, ), (1.12)
where oc=q—1, (1.13)
7 =(1—u)n, (1.14)

and J(o,7) is a new transcendental scaling function which reduces to the Bessel
function J,(2%) when o = 1.

For the Bethe approximation of the spin 1 Ising model it can be shown that the
function w V1L, (u) is always a polynomial of degree n— 1 in the variable u. The
numerical investigations of Bessis et al. (1976) and Gaunt (1978) indicate that, for

Phil. Trans. R. Soc. Lond. A (1991)
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574 G. 8. Joyce and S. S. Mahal

o > 1, this polynomial function has n—1 simple zeros {u,(o,n);v=1,2,...,n—1}
which are all located in the real interval 4, < » < 1. (For convenience, it is assumed
that the zeros u, (o, n) are arranged in ascending order with u (o, n) < u,,,(o,n) for
v=1,2,...,n—2.) In §6 we use the Airy function representation for L ,(«) to derive an
asymptotic expansion for [u,(c", n) —u,]/u, in powers of n~ which is valid as 7 o0,
with v fixed and ¢ > 1. The leading-order contribution to this expansion is found to
be

[, (0, ) —u,]/ue ~ 2 03(0? = 1) S|a,|n 7, (1.15)

where a, denotes the vth negative zero of the Airy function Ai (z). We also show that
the limiting density of the zeros {u,(c,n); v =1,2,...,n—1} as n— 00 is given by the
simple formula

plo,w) = n(2m) o 4 1) w (u—wu,)5(1 —u) 7%, (1.16)

where u, < w < 1. Finally, in §7 we discuss briefly the asymptotic properties of the
high-field polynomials L, (u) for the Bethe approximation in the mean-field limit
q-> 00, J -0 with ¢J = J,, held constant.

2. Evaluation of L, (u) for the Bethe approximation

In the Bethe approximation (Bethe 1935; Peierls 1936; Domb 1960) attention is
focused on a cluster of spins €' which consists of a typical spin o, and all its nearest-
neighbour spins o, ...,0,. The interaction of the central spin o, with its nearest-
neighbour spins is dealt with exactly while the interactions of the spins o, ..., o, with
the other spins in the lattice are represented approximately by a mean field 5. 1t
follows, therefore, that the system can be described by a cluster hamiltonian

He=—Jo, 5_‘, o;—myBo,—my B, % O (2.1)
j=1 i=1
where B, =B+5. (2.2)
The partition function associated with the hamiltonian (2.1) is
Zo = i@ i 2 ) o (2 g+ 2 ) (2.3)
where 2= u = exp (—2J4), (2.4)
M = exp (—2my B, f). (2.5)
The mean field B’ is determined by imposing the consistency condition
(o> = <o) = . = (o, (2.6)
where lopp =2 X X ... X ojexp(—pHe), (2.7

ocp=*1lo=+1 g,=t1

andj=0,1,...,q. If (2.1) is substituted in the thermal average (2.7) it is found that
the consistency condition (2.6) can be written in the form

O e /3) = (11/q) 0% c/py). (2.8)

The formula (2.3) is now used to evaluate (2.8). After some simplification we obtain
the following implicit equation for the mean field parameter y, :

o= p [(L42p0)/ 2+ ) 17 (2.9)
Phil. Trans. R. Soc. Lond. A (1991)
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In a similar manner we can derive an expression for the magnetization per spin m by
using the equations

mim, = (00> = —2pLH L op) (2.10)
and (2.9). The final result is
m/my = (1—3)/ (1 +2zp, +3). (2.11)

To expand m/m, in powers of u we first write equations (2.9) and (2.11) in the
alternative forms

w=Elp(q,u, I, (2.12)

and m/my = yr(u, §), (2.13)
respectively, where )

P(g,w, §) = w [(1+§)/(1+uf)]" ™, (2.14)

Y(w,§) = (1—ug®)/(1+2ué+ut?), (2.15)

and £ = pu,/z. Next the physically acceptable solution § = £(q, u, 1) of the implicit
equation (2.12) is expanded as a Taylor series in powers of u by applying the
Lagrange reversion theorem (Copson 1935) to (2.12). This procedure gives

e}

£= X a" HP(G w, £))" ]emos (2.16)
n=1 n!
where 8, = 0/0§. It is now possible, at least in principle, to obtain the high-field series
for m/m, by substituting (2.16) in (2.13). Fortunately, this stage of the calculation
can also be carried out in closed-form by using a generalization of the standard
Lagrange reversion theorem (Copson 1935). In this manner we find that

ﬁ =1-2u Z [a" HG (u, &) (H(q,u, £))" ez (2.17)
0
where Gu, &) = —gu‘lég Yr(u, §)
= (L4 2E +uf?) /(1 + 2uf + uk?). (2.18)
The comparison of this result with (1.8) yields the basic formula
L, (u) = w8, (g, ), (2.19)
J — 1 n—1 1 +g n(q_l)
where S,_1(q,u) = ﬂ[ag {G(u,g)(1+ug> o (2.20)

is a polynomial of degree n—1 in the variable u.
The formula (2.20) can be evaluated by first introducing the standard generating
function (Erdélyi et al. 1953)

1—t2 [ee]
e = " 2.2
ToarEs T2 I L (2.21)

where 7', () denotes a Chebyshev polynomial of the first kind. If this result is applied
to (2.15) it is readily seen from (2.18) that

Gu,§) = 2 C,(u)€", (2.22)

7M8

Phil. Trans. R. Soc. Lond. A (1991)
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576 G. 8. Joyce and S. S. Mahal
where C,(u) = (—1)"n+1)2""'T,, (2) (2.23)

is a polynomial of degree n in the variable u = z*. It follows from (2.23) and the three-
term recurrence relation for 7', (z) that the polynomial C,(u) satisfies the relation

n(n—1)C,(u)+2(n*—1)uC,_ (u)+n(n+ 1) uC,_,(u) = 0, (2.24)

with the initial conditions Cy(u) = 1 and C|(u) = 2(1 —2u).
Next we consider the further generating function

[A+E)/(L+ud)] = X D, (y,u)E", (2.25)
n=0
where D, (y,u) is a polynomial of degree n in the variable u. It can be shown that the
polynomial D, (y,u) satisfies the recurrence relation

nDy (v, w) +l(n—1=y)+(n=1+y)ul D, (v, u)+u(n—2) D, ,(y,u) = 0, (2.26)

with the initial conditions D_,(y,u) = 0 and D(y,u) = 1.

The generating functions (2.22) and (2.25) enable one to express (2.20) in the
simplified form
1

Crpr () Dy (g — 1), ). (2.27)

0

n

I M

1
Sn—l(%“) = Zm
This formula has been used, in combination with the recurrence relations (2.24) and
(2.26), to calculate the set of polynomials {S,(¢q,u);n =0,1,2,...}. The first few
polynomials are

Solg,u) =1, (2.28)
Si(q,u) =—[(g+1)u—q], (2.29)
Sy(g,u) = L (3¢2+ 3¢ +2) u2— 6¢%u + 3q(qg—1)], (2.30)

Sa(g,w) = =3 [(2¢+1) (4¢* +q+3) u’— 6g(4¢* ~ g+ 1) u*
+3q¢(29—1) (49—3)u—2q(¢—1) (4¢—5)]. (2.31)
An alternative closed-form expression for S, _,(¢,u) has been given by Bessis et al.

(1976) in terms of Jacobi polynomials and Chebyshev polynomials of the second
kind.

There are several special cases of the polynomial S,,(¢, ) which are of interest. For
example, it can be shown from (2.20) that

Sulg, 1) = (=1)", (2.32)
_d(n+1)g—(n+1))!
Sula: 0 == Nt g—2n)! (2.33)
It is also possible to prove that
8,0, u) = (—u)", (2.34)
S,(1,u) = (—1)"2"T,,,(2), (2.35)

where z = u?.
For the case ¢ = 2 and u < 1 the physically acceptable solution £ of the implicit
equation (2.12) is given by
2uE = —(1—p)+[(1 —p)2 4 dupu. (2.36)
Phil. Trans. R. Soc. Lond. A (1991)
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The substitution of (2.36) in (2.13) yields the following exact result for the one-
dimensional Ising model (Domb 1960):

m/my = (1—p) [(1—p)*+dup] = (2.37)

From this formula and the work of Bessis et al. (1976) and Joyce (1990) it is found
that
S, (2,u) = P01 —2u), (2.38)

where P #(x) denotes the Jacobi polynomial of degree n.

3. Application of the saddle-point method

The main aim in this section is to determine the asymptotic behaviour of L, (u) as
n— oo with « fixed in the interval (0, u,), where

ue =[(9—2)/q1* (3.1)

is the critical value of the variable u and ¢ > 2. We begin by applying the Cauchy
integral representation for the (n—1)th derivative of an analytic function (Copson
1935) to (2.20). This procedure enables one to write (2.19) in the alternative form

1Ly (w) = w4 (g, ), (3.2)

where 1,(q,u) = LJ G(u, x) exp [nd' (o, u, x)] d, (3.3)
2ni

Flo,u,2) =—Inx+ocln(1+2)—oln (1 +ux), (3.4)

o=q—1, (3.5)

and I" denotes a closed contour in the x-plane which does not enclose any of the
singularities of the integrand in (3.3) except the pole of order n at x = 0. Bessis et al.
(1976) have also derived an alternative contour integral representation for L ,(u). The
connection between the two representations can be established by first applying the
transformation x = (1 —§)/(§—w) to (3.3), and then integrating by parts. It should be
noted, however, that there appears to be an error in the second part of the final
formula (6.22) given by Bessis et al.

From (3.4) and the condition (0F/0x) = 0 it is readily found that F(o, u, x) has two
saddle points (o, u) which are the soiutions of the quadratic equation

we?+[(c+1)u—(c—1)]z+1=0. (3.6)
It is convenient to apply the transformation
x=(c—1)"'(1+0%) (3.7)
to (3.6). In this manner we obtain the modified saddle-point equation
cx*+[(c*+1)—(c—1)*u ' Z+0 = 0. (3.8)
When 0 < u < u, we can use the parametric representation
u = (0—1)*/[(c®+1)+20 coshI], (3.9)
where 0 < & < 00, to write (3.8) in the simplified form
7*—2(cosh¥)z+1=0. (3.10)

Phil. Trans. R. Soc. Lond. A (1991)
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From this result it is seen that
v, = (c—1)(1+oe*?), (3.11)

with 0 <9 < 0. For the case u, <u <1 the parametric representation (3.9) is
replaced by

u = (0—1)*/[(62+ 1)+ 20 cos b], (3.12)
where 0 < 6 < n. The substitution of (3.12) in (3.8) gives the saddle points
x, = (c—1)(1+oeti?), (3.13)

with 0 < 6 < 7. It should be noted that the saddle points x, are coincident when
u=1u, and u = 1.

The asymptotic behaviour of the integral (3.3) as n—> 0o, with u fixed in the
interval (0,u.), may now be determined by allowing the contour I" to pass through
the saddle point

x_=u_(o,u) = (c—1)"1+0e7?), (3.14)
which is closest to the origin in the z-plane. Next we expand the functions F(o,u, x)
and G(u,x) as Taylor series about z_ and follow the standard saddle-point method
(Dingle 1973). To leading order this procedure gives

G enF0 +00
Lig.u) ~ =4 f exp (— ik, y*) dy, (3.15)
as n— 00, where

(c41) (e +e7?)

Gy =Gu,x_) = clo—1) (I+e ) (3.16)

— o
F, = F(o,uxz) = 1n[(0_1(;f:fljae_,9)], (3.17)
B, = [ F(o,u )], = 7D U=e) (3.18)

- o(l+e ) (L+oe?)?’

0 <& < 00 and o > 1. These results and (3.2) lead to the asymptotic representation

L,(u) ~ a(o, ) n iexp[— Ao, ) n], (3.19)

as m—> 00, where
a(o,9) = Yo +1)[2r0(0—1) (14 cosh $) sinh 9], (3.20)
A, 9) = LI [e“ D (o +e”) /(1 +ae?))7*1], (3.21)

and 0 <9 < o0, and o > 1.
Higher-order asymptotic representations for L,(u) can also be derived by
substituting the values of the derivatives

F,=[0;F(o,u,2)],_, , (3.22)

G =03 G(u, )],y (3.23)

where n = 0,1,2, ..., in the extensive set of formulae given by Dingle (1973). This
procedure involves a large amount of complicated algebra which was carried out

using the REDUCE computer algebra program (Hearn 1968; Rayna 1987). The final
result is

M s

L,(u) ~ a(o, %) n texp[— Ao, ) n] S Ve, )n, (3.24)

r

I
o

Phil. Trans. R. Soc. Lond. A (1991)
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as n— o0, where
V.(o,9) = [24(c—1) (1 —cosh &) sinh 37" W, (o, D), (3.25)
Wylo, 8) =1, (3.26)
Wi(o,9) = [2(s, + 35) cosh® & —2(s, + 65) cosh &+ 5(s, + 14)], (3.27)
Wy(o, &) = L[4(sy+ 70s, +1947) cosh? & — 8(s, + 532s, + 5517) cosh® &

+12(2s, +917s, + 7149) cosh® &

+4(67s,— 20515, — 16656) cosh & + (975, + 2716, + 19494)], (3.28)
W,(0,9) = A[8(— 1395, +957s, + 28 7585, + 749 089) cosh® 9

+24(139s, — 54275, — 578 538s, —3530179) cosh® &

+12(= 1095, + 36 5825, + 5 4554285, + 27 684 664) cosh? 9

+4(992s, — 126 1865, — 31 779024s, — 150 105 722) cosh® &

+6(25807s, + 4133795, + 2225051 1s, + 96 657 758) cosh? &

+6(30691s, — 3935, —10948407s, —46 737 286) cosh &

+ (815535, 4+262986s, + 138745595, + 55924 172)], (3.29)

s, =0"+07", (3.30)
and 0 < ¢ < c0.

The basic asymptotic expansion (3.24) for L, («) is only applicable for 0 < u < u,.
Furthermore, the expansion (3.24) clearly breaks down as n— oo and 9% -0+ with
n9® small. However, we shall find in the following section that (3.24) plays a crucial
role in the derivation of a uniform asymptotic expansion for L, () which has a wider
range of validity.

4. Uniform asymptotic expansion for L, (u)

In the neighbourhood of & = 0+ the two saddle points (3.11) are nearly coincident
and the asymptotic expansion (3.24) is not uniformly wvalid. Under these
circumstances, we can follow an alternative procedure which was developed by
Chester et al. (1957).

In this method the implicit cubic transformation

F(o,u,z) =10 —{(o, N w+A(c,?) (4.1)

is used to introduce a new complex variable w. The parameters {(o,9) and A(o,9)
in (4.1) are defined to be

Yo, 9) = GYE[F(o,u,x,)—F(o,u,z)], (4.2)
A(o,d) = 3F (o, u,x,) +F(o, u,x )], (4.3)
where 2, denote the saddle points (3.11). From these expressions one finds that
L@ N = A, 9), (4.4)
A(o,9) =—%o—1)Inw, (4.5)

where A(o,9) and u = u(o,¥) are defined in equations (3.21) and (3.9) respectively.
Chester et al. (1957) have proved that just one branch of the transformation (4.1)
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gives a mapping <> w which is uniformly regular for sufficiently small w and &. On
this regular branch x = x(w, 19) the saddle points x = x, and x = x_ correspond to the
points @ = —¢* and @ = 4 ¢* respectively.

Next we consider the uniform expansion

dx

G(u, )dw

2 pulo, ) (@* ="+ T g0, P 0=, (4.6)
m=0 m=0

which is convergent for sufficiently small w and &. The coefficients p,,(o,d) and
qn(o,¥) in this expansion are determined successively by evaluating the mth
derivative of equatlon (4.6) with respect to w at the two corresponding sets of points
{t =2, 0=—¢} and {x = _,0 = +£3}. The derivatives of x = x(w, 9) with respect
to w which are required in these calculations are found by repeated differentiation of
the transformation (4.1). To leading order this complicated procedure yields

(o +1)(c+e’) (1+oe?) ¢

[o(e—1)°(e’+ 1)’ — 1)}’
and ¢q,(o, %) =0, where {={(o,?) is defined in (4.4). Higher-order calculations
indicate that the coefficients q,, (o, ¥) are identically equal to zero forallm =1, 2, ....
(A general proof of this last result has not yet been established.)

We now substitute (4.1) and (4.6) in the transformed integral (3.3) and apply (3.2),
(4.5), (4.7) and the identity ¢,,(o,3) = 0. In this manner we obtain

((719

ol ) = — (4.7)

n2L,(u) ~ 2nta(o, 9) g%mzoz':(g 5 Im(&m 0 (4.8)
where a(o,¢) is defined in (3.20),
Sn(&n,Cy) = (@* =)™ exp [n(30’ — {w)] dw, (4.9)

2mi c,

and the contour (] is taken from oo exp (—3mi) to 00 exp (+1ni). Chester et al. (1957)
have shown that the expansion (4.8) can be written in the alternative form

L,(u) ~ 2nta(o, ) &in 3[A1 (&nd) S A, (o, 9)n 2405 AV () X B (T, D) _2”‘]
m=0 m=0
(4.10)
as n— o0, where Ai(z) denotes the Airy function and 4,(o,d) = 1.

In order to determine the coefficients 4, (o, %) and B,,(o,?) in the basic uniform
asymptotic expansion (4.10) it is clear that we must first obtain formulae for the
higher-order coefficients p, (o, $), p,(o,?), ... . The derivation of these formulae from
(4.6) involves a large amount of very complicated algebra. Fortunately, there is an
alternative procedure which is much simpler!

In this method the Airy function and its first derivative in (4.10) are replaced by
the following standard asymptotic representations:

Ai (@) ~ W ke S (< 1)yt (4.11)
k=0

AV (i) ~ —tndhade i 3 (— 1)F d, (n)7", (4.12)
k=0
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as n— o0 with 0 < & < o0, where A =%§%,

(2k+1) (2k+3) ... (6k—1)

Cp = (144) I ) (4.13)
d, =—[(6k+1)/(6k—1)]c,, (4.14)
fork=1,2,..., with¢, = d, = 1. A comparison of the resulting asymptotic expansion

with the equivalent saddle-point expansion (3.24) enables one to derive the required
formulae for the coefficients 4,,(c,9) and B,,(0,?). In particular, it is found that

2m
Ao, ) = 3 d 2V, (0, 9), (4.15)
k=0
N 2m+1
ngm(O': 19) = - E ck §—3k‘/2 V2m+1—~lc(0': &)a (4‘16)
k=0

where m =0,1,2,..., and { = {(o,?) is defined in (4.4). From these general results
and (3.25) we readily obtain

A0, 9) =1, (4.17)
By(0,9) = &L —5+20, Wy(o, 9], (4.18)
A (0, 9) = 78 — 455 + 288, Wy(c, 9) + 862 W, (o, 9], (4.19)
B,(0,9) = gskat 5[ — 85085+ 23108, W, (0, &) — 12082 W,(o, &) + 4883 Wy(a, 9],
(4.20)
where 8, = 0,(c,9) = [S(o, )P . (4.21)

(0 —1) (cosh ¥ —1) sinh &

It follows from equations (3.21) and (4.4) that the function {(o,?¥) can be
expanded about ¥ = 0 in the form

0 9 2k+2
=[g(g2—1)]F —
o9 = o~ 0P S o (15) 4.22)
where the coefficients (o) are symmetric polynomials of degree k in the variable o.
Formulae for (o) are listed in Appendix 1 for £ < 7. The direct substitution of (4.22)
in equations (4.15) and (4.16) indicates that the coefficients 4,,(o,?) and B, (o, 9)
have poles of order 6m and 6m+4 respectively at & = 0. However, if the Laurent
series about & = 0 are derived for these coefficients we find that the singular parts of
the series cancel exactly and we can write

A, (0,9) = [——i——rm %o] A (o) (—i-)% (4.23)
e o —1)] 5 " 1+o) '
4 2m+5 " 9 \2k
B, (0,9) = [(f—(o"z——l;} EOB% (o) (1—:;) ) (4.24)

where m = 0,1, ..., with 4,(c,9) = 1. Expressions for the first few coefficients A (o),
B () and B{ (o) are given in Appendixes 2, 3 and 4 respectively.
We are now able to use the Taylor series (4.22)—(4.24) to evaluate the basic uniform
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582 G. 8. Joyce and S. S. Mahal

asymptotic expansion (4.10) in the limit ¥ —->0+. In this manner we obtain the
asymptotic representation

L, (1) 1{‘““)2]%—%[&(0)

~ooo—1)

., o] m 4 2m+4§
as n—> o0, where 4{”(o) =1,
Ai (0) = 375(2n)"'T(), (4.26)
— A (0) = 352n)"'TQ), (4.27)

and I'(x) denotes the gamma function. It should be noted that the special case (4.25)
could also have been derived by using a modification of the saddle-point method
described in §3 with F, = F, = 0 and F, # 0 (see Dingle 1973, p. 136).

Tt is possible to write the basic asymptotic expansion (4.10) in the alternative form

L, (u) ~ 2na(o, ) g%n-%[u > B, (0,9) n~2m]Ai (&ni+e), (4.28)
m=1

where e=¢en, 0,9 =n"3 % H,(o,9)n 2", (4.29)
m=0

The coefficients #,,(o, ) and H,,(o, ) may be related to the coefficients 4,,(o, ) and
B,,(o,9) by first developing the Airy function in (4.28) as a Taylor series in powers
of ¢. Next we replace ¢ in this series by (4.29) and use the standard differential
equation

Ai” (z) = z Al (), (4.30)

to express the higher-order derivatives of the Airy function in terms of Ai(z) and
Ai’ (). Finally, the resulting asymptotic expansion for L, (u) is compared with (4.10).
In this manner we obtain

H(o,9) = By(o,9), (4.31)
Ey\(o,9) = Ay(0,9) =3[ By(o, N)]* ¢, (4.32)
H,y(0,9) = By(0,9) = By(0,9) Ay (0, 9) +3[ By (0, ) °¢, (4.33)

where { = {(o,?) and 9 > 0.

We see from equations (4.22)—(4.24) that the coefficients ¥,,(o,9) and H,,(o,9)
have Taylor series representations about ¢ = 0. In particular, it is found that the
coefficient H,,(o,?9) can be expanded in the form

4 2m+3 o o 9 \2k
= |- m — «
H,(0,9) [0(02_ 1)] IEOH,C (U)<1+O) , (4.34)
where m = 0,1, ..., and
HY (o) = B (o). (4.35)

We can determine the first few coefficients {H{"(o);k = 0,1, ...} using the formulae
listed in Appendixes 1-4. The final results are given in Appendix 5. In §6 we shall find
that the alternative asymptotic formula (4.28) is especially useful for analysing the
asymptotic properties of the zeros of L, (u).
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5. Asymptotic behaviour of L ,(u) for 4, <u < 1

It is seen from the parametric equations (3.9) and (3.12) that the asymptotic
properties of L, (u) for u, < w < 1 can be established by applying the transformation
¥ =i6, with 0 < 6 < m, to the results given in the previous sections. We begin this
procedure by using (3.21) and (4.4) to obtain the transformation relations

g(O': 10) = 5(0', 0)’ (
[L(0,i0)]F = —i[&(o, O], (

S
[N

where

20'+(0'2+1)cos0}]5 (5.3)

é_’_((f, 0)= (%)5[_(‘7—1)0+(0+ 1)arccos{(g2+1)+2o-cosﬁ

and 0 < 0 < m. It should be noted that a formula similar to (5.3) can also be derived
for the function {(o,¥). In particular, we find that

. 20+ (02 +1) cosh 9|
= (&) —-1)9— 1 h .
4o 9) = @) [+(a )9~ (o +1) arccos {(0,2 Ot 3yt (5.4)
where & > 0. Next we use equations (5.2) and (4.21) to obtain the further relation
8o(0,i0) = 0,(a, 0), (5.5)
_ _ [E(o, 0)]
where Oo(0,0) = (5.6)

(0'—1)(1—0080)S1n0

and 0 < 0 <.
We are now able to apply the transformation ¥ =if to the basic uniform
asymptotic expansion (4.10). This procedure yields

L, (u) ~ 2nta(o, 0) (O)in %[Al( &nd) ;: A, (o,0)n 2
+n AV (—End) ;; B, (0,0) -zm], (5.7
m=0
as n— o0, where 0 < 0 <,
4,,(0,0) = A4,,(0,i0), (5.8)
B, (0,0) = B,,(c,i0), (5.9)
a(o,0) = Yo +1)[2no (o —1) (14 cos 0) sin 0] 73, (5.10)

and { = {(a, 6). Explicit formulae for the coefficients 4,,(c, §) and B,,(o, 0) are given
below for m = 0 and 1:

Ay0,0)=1, (5.11)
By(o,0) = £ —5+28, W,(0,0)], (5.12)
A, (0, 0) = 1550 (455 — 280, W, (0, 0) —8(8,)*Wy(0, 9)] (5.13)

B,(0,0) = 555550 °[85085— 23108, W, (0, 0) + 120(3,)2 W,(, 0) — 48(3,)* W, (o, 0)],
(5.14)
where W.(o,0) = W,(o,i0), (5.15)
and &, = 8,(c, ). The coefficients {W,(o,0);r = 1,2,3} are readily obtained from
equations (3.27)—(3.29) respectively by replacing cosh & with cos6.
Phil. Trans. R. Soc. Lond. A (1991)
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584 G. 8. Joyce and S. S. Mahal

When 6 -0+ the uniform asymptotic expansion (5.7) reduces to the critical case
(4.25). In the critical region |u —u,| <€ 1 the dominant asymptotic behaviour of L, (u)
can be determined by applying the Taylor series (4.22) to the leading-order term in
(5.7). We find that

L) ~ 27307 o — 1) o+ 1) nFAi [— 278 0730 — 1)i((w/u,) — 1) ni],  (5.16)

as n—> o0 and u—>wu, +. This result is in agreement with the general scaling-law
prediction (Gaunt 1978)

Ly (u) ~ n_z_(w)f(?/), (5.17)
where f(y) is a function of the variable
y = ((w/ue)—1)n, (5.18)

and 8,4 are standard critical exponents. For the Bethe approximation it is well
known that § =3 and 4 = 3.

The uniform asymptotic expansion (5.7) breaks down in the limit 6 -~ — because
the saddle points z,, and the poles and zeros of the rational integrand function
G(u,x) in (3.3) all coalesce when 6 = m, w = 1. For this more complicated case it has
been shown by one of us (Joyce, unpublished work) that the dominant asymptotic
representation for L, (u) can be written in the form

Ly(u) ~ (= )" 7 (o, y), (5.19)

as n— 00 and u— 1+, where

4 /2 cos (209 cos 0) sin® 0
Jlo7) _E‘T(‘T“)L o+ )sin?0F (o— 1) cos? 0] (5.20)
1= (1—upn, (5.21)

and o > 0. Currently, we are investigating the possibility of replacing (5.19) with a
complete asymptotic expansion which is uniformly valid in the neighbourhood of
w = 1. One approach to this problem is to apply the generalized saddle-point methods
developed by Bleistein (1967), and Bleistein & Handelsman (1986) to the contour
integral (3.3).

When o = 1, ¢ = 2 the formula (5.20) reduces to

/2
J(1,9) = %f cos (29 cos 0)do (5.22)

0

=Jo(27), (5.23)

where J,(z) denotes a Bessel function of the first kind. This result is in agreement
with the earlier work of Joyce (1990) on the one-dimensional Ising model. For general
values of o > 1 the function J(o,#) can be represented by the Taylor series

T = 3 o) =Lt (5.24)
v 1c=ojk (2k)! ’ -

where |5 < o0, and the coefficient j, (o) satisfies the recurrence relation

(k+1)ji1(0)=[(c®+ 60+ 1) k+ (02 +1)]j,(0) +20(0 + 1)2(2k—1) j,_ (o) = 0,
(5.25)
with the initial conditions j,(o) = 1 and j,(¢) = o+ 1.
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When &né> 1 we can replace the Airy functions in (5.7) with their standard
asymptotic representations (Antosiewicz 1965). In this manner we obtain the non-
uniform asymptotic expansion

- 2l i g2 AR L a (=1)" Wy, (a,6)
L) ~ 2a(o,6)n [Sln(gn(g)+in),§0(24(0'—1)(1—cosﬁ)sin¢9)2’n2’
. AL L1 4 (= 1) Wy, 14(0,6)
cos sm(€) +in),§0 (24(o—1) (1 —cos ) sin 0)2’+1n2’+1]’ (5.26)

as n—> o0, with @ fixed in the interval 0 < 8 < w. This result could also have been
established by applying the ordinary saddle-point method (Dingle 1973) to the two
complex conjugate points x, which are defined in (3.13). It is interesting to note that
the dominant asymptotic behaviour of the scaling function J(o,#) as 4 — 00 can be
determined by taking the limit 6 —m— in the leading-order term of the expansion
(5.26). We find that

J(o,n) ~ ot 0'%(O'+ 1) (oc— 1)‘277‘% cos (20'%77 —3m), (5.27)

as 97— 0o, where o > 1. A direct derivation of this result has also been carried out
using the integral representation (5.20).

6. Asymptotic properties of the zeros of L, (u)

The high-field polynomial L,(u) has a trivial zero at « = 0, and n— 1 simple non-
trivial zeros {u,(o,n); v =1,2,..., (r—1)} which are all located in the real interval
u, <u < 1. (A general proof of this last remarkable property has not yet been
established.) We shall enumerate the non-trivial zeros in ascending order with

U < Uy (0, M) < Uy(o,m) < ... <U,_4(0,n) < 1. (6.1)

To investigate the asymptotic properties of these zeros as n— oo we first apply the
transformation ¢ = i6 to the modified expansion (4.28). This procedure gives

L, (u) ~ 2nia(o, 0) (5)%n-%[1+ E E,(0,0) n—2M]Ai(—§‘n%+a, (6.2)
m=1
where e=¢en, o, 0)=n" ;} H,(o,0)n2m, (6.3)
m=0

E,(0,0)=E,(c,i0), (6.4)
H,(0,0)=H,(c,ib). (6.5)

From equations (4.31)-(4.33) we readily find that
ﬁ0(0->0) =BO(0-7 0), (6.6)
E,(0,0) = A,(c,0)+1[B,(o, 0], (6.7)
H,(0,0) = By(0,0)—By(c,0) A,(c,0)—§{By(0, O)I’C, (6.8)

where { = {(o,6) is defined in (5.3).
It is now evident from (6.2) that L, (u) will be asymptotically equal to zero when

8.0, = lant+ 5 Ho(o,0,)n 2, (6.9)

>y
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Table 1. Comparison of the exact values of the zeros {u, (11, 30); v = 1,2, ...,29} with the
corresponding asymptotic values

(The quantity e,(11,30) is the difference between the exact value of (11, 30) and the
asymptotic value of (11, 30) as determined from the formula (6.9).)

v exact u, (11, 30) e, (11, 30) v exact u,(11, 30) e, (11, 30)
1 0.733063277996 444 1.0 x 10710 16 0.948220396494 102 6.0 x107°
2 0.761534 131920581 1.4x10710 17 0.955410053876478 8.2x107°
3 0.784 457818205941 1.9x 10710 18 0.962025254 025866 1.2x1078
4 0.804 339045336472 2.5 x1071° 19 0.968080115354 309 1.7x 1073
5 0.822134531975231 3.3x10710 20 0.973586 541034 947 2.4x1078
6 0.838336101035012 4.2 x10710 21 0.978 554580816 165 3.7x10°®
7 0.853237439540788 5.4 x10710 22 0.982992712932553 58x%x1078
8 0.867030790117 555 7.0%x 10710 23 0.986 908063673 323 9.7x 1078
9 0.879850076218888 8.9x 10710 24 0.990306575299 621 1.7x 1077
10 0.891792881084 122 1.1x107° 25 0.993193 125039559 3.3x1077
11 0.902932754234730 1.5%x10°*° 26 0.995571582 367 334 7.2x1077
12 0.913326 603 658 309 1.9%107° 27 0.997 444744885551 1.9%x107¢
13 0.923019385246473 2.5%x107° 28 0.998 813898638104 6.3x 107
14 0.932047210454 977 3.3x107° 29 0.999676 570095532 3.5x107°
15 0.940 439480559020 4.4x107°
where v =1,2,...,n—1 and a, denotes the vth negative zero of the Airy function

Ai (2). (Note that all the zeros of Ai(z) lie on the negative real axis.) If the implicit
transcendental equation (6.9) is solved for the quantity 6, = 6,(c, n), then the vth
zero of L ,(u) is given by

u,(o,n) ~ (c—1)*/[(c*+ 1)+ 20 cosb,], (6.10)

wherev = 1,2,. — 1. This procedure has been carried out for » = 30 and ¢ = 12 by
applying a dlrect 1terative method to equation (6.9) with the coefficients H (o, 6,) and
H,(o,6,) and a suitable initial value for 6,(11, 30). The resulting asymptotic values for
u,(11,30), (v =1,2,...,29) are compared with the corresponding exact values in
table 1. We see that (6.9) gives very accurate approximations for the zeros u,(11, 30),
(v=1,2,...,29) especially for small values of v.

When 7 oo with v fixed the quantity u, (o, n) has a limiting value of u,. Under
these circumstances we can use (5.16) to obtain the leading-order asymptotic
representation

[w,(0, n) — ) /Uy ~ 23302 — 1) |a,|n 3, (6.11)

as n— c0. Higher-order representations may be derived by first applying the Taylor
series (4.22) and (4.34) with 9 = if to equation (6.9). This procedure gives

X,= V3 G(0) (~ X = 3 (X0 S HP0) (<Y, (6.12)
k=0 m=0 k=0
where X, =X/(o,n) =la,[to(c?*— 1)yn]s, (6.13)
Y,=Y(0,0)=1[0,/(1+0)]% (6.14)
Next we use the implicit relation (6.12) to expand Y, in the form
Y= 3 Gyl ) (), (6.15)
k=0
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Table 2. Values of the zeros y,(o) for o = 11

7,(11) v 7,(11)

0.539466 247662 236 2.947296 356 688207
1.032882640695021 3.422625022 029556
1.515577449518671 3.897551031310762
1.994 386226 228 526 4.372200486420704
2.471 349751590382 4.846652017405834

<

U W N =
SO WIS

—_

where C,(c,v) is, in general, a polynomial in o and |a,|~%. There is sufficient data in
Appendixes 1, 3 and 5 to determine the polynomials C,(c,v) for k£ < 8. We now use
equations (3.12) and (6.14) to obtain the expansion

20 © am (_ Yu)m -1
u, (o, n)/u, [1+——(1+0_)2m=1(1+0) ———(Qm)! . (6.16)
Finally, the substitution of the series (6.15) in (6.16) yields the required formula
[w, (0, n) —ue]/ue ~ O’Xu[1+ 2 Qulo,v) (Xu)"‘], (6.17)
m=1

as n— o0 with v fixed, where the quantity X, = X (o, n) is defined in equation (6.13).
Expressions for the coefficients @,,(c, v) in (6.17) are given in Appendix 6 for m < 7.
The basic result (6.17) is consistent with the empirical numerical analysis of
Majumdar (1974) and the predictions of scaling-law theory (Gaunt 1978).
We have evaluated the expansion (6.17) numerically for the particular case

o = 11 and n = 30 using the results in Appendix 6. In this manner we obtain the
approximations

u,(11,30) = 0.733063278031,

uy(11,30) =~ 0.761534 132484,

uy(11,30) =~ 0.784457819917.

These results for {u,(11,30);v=1,2,3} are in excellent agreement with the
corresponding exact values given in table 1. For increasing values of v =4,5,...,29
there is a gradual decrease in the accuracy of the asymptotic approximation (6.17).
In general one would expect (6.17) to give an accurate representation for u, (o, n)
provided that » is sufficiently large and 1 < v < n. It should be noted, however, that
the expansion (6.17) breaks down completely in the limit o — 1 +. When v > 1 we can
use the standard asymptotic expansion for a, (Antosiewicz 1965) to simplify (6.17).

The dominant asymptotic behaviour of the zeros (6.1) which are close to the limit
point w = 1 can be readily determined by considering the asymptotic relation (5.19)
and equation (5.21). It is found that

Up_ (0, 0) ~ L—[n,(0)/n]*+..., (6.18)

as n— oo, where 1 < v <n and #,(0) is the vth positive zero of the scaling function
J(o, 7). The correction terms to the expansion (6.18) only involve even powers of 1/n.
Numerical values for the zeros {#,(c); v = 1,2, ...} have been calculated for the special
case o = 11 by applying the Newton—Raphson method to the series (5.24). We list
the final results in table 2 for v < 10. It is now possible to use (6.18) and table 2 to
derive the approximation

Ugy(11,30) & 0.999 676644,
Phil. Trans. R. Soc. Lond. A (1991)
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which is in good agreement with the corresponding exact value in table 1. We see from
equation (5.23) that (6.18) also remains valid when o = 1, with

771/(1) = %jO,V’ (619)
where j, , denotes the vth positive zero of the Bessel function J,(z).
In the limit n—> oo the zeros {u,(o,n);v=1,2,..., (n—1)} form a dense quasi-

continuum in the interval (u,, 1). The limiting density p(c,u) of these zeros can be
determined by first using equations (3.12) and (5.3) to express the dominant part of
the asymptotic formula (6.9) in the alternative form

wflo, ) ~ Sk (6.20)
where f(O', ’LL) =—(0— 1) arccos [(G— 1)22_0':;(0-2 4 1):]
(*+1)—u(o+1)? .
+((r+1)arccos[ 5 ] (6.21)

Next we substitute the asymptotic representation
la,J* ~ 3mv, (6.22)

as v-> 00, in (6.20) and differentiate the resulting expression with respect to v. In this
manner we find that

plo,u) = n(21) " Hf/Ou). (6.23)
Finally, the evaluation of the derivative in (6.23) yields the limiting density function
plor,u) = n(2r) Yo+ 1) u (w—ug (1 —u) (6.24)

as n—> o0, where u, <w < 1. For the special case o = I the formula (6.24) gives the
correct result for the one-dimensional Ising model Joyce (1990).

7. Mean-field limit

If we define J = J,/q, where J is a positive constant, and take the limit ¢ — oo then
the Bethe approximation reduces to the mean-field theory. (The introduction of the
constant J, ensures that the ground-state energy of the system remains finite as
q—>0.) In this mean-field limit we find from equation (2.19) and the expressions
(2.28)—(2.31) that the first few coefficients L, (u) can be written in the form

L,(K) = exp (—2K), (7.1)

Ly(K) = —Y(1—4K) exp (—4K), (7.2)

Ly(K) = 5(1—12K 4+ 24K?) exp (— 6K), (7.3)

L,(K) = —{5(3—T72K + 384K*— 512K?) exp (—8K), (7.4)

where K=J,/(kgT). (7.5)
For the general case it has been proved by one of us (Joyce, unpublished work) that
L, (K) = (—1)" LY (4nK) exp (— 2nK), (7.6)

where L{(x) denotes a generalized Laguerre polynomial (Szegd 1939).
The asymptotic behaviour of L, (K) for 1 < K < oo can be determined by taking
the limit o — o0 in equation (4.10). To leadmg order this procedure gives

LK) ~ 28 K5 (K — 1) ¢hn b Ai (&nd), (7.7)
Phil. Trans. R. Soc. Lond. A (1991)
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as m-> 00, where . ) -
¢ = {(K) = 35[K*(K—1):—arccosh (K3)]5, (7.8)
and 1 < K < . In a similar manner we find from equation (5.7) that
Ly () ~ 28K (1 =) Q) m A (= G, (7.9)
as n— o0, where o \ ) , L
¢ = ¢(K) = 33[arccos (Kz) — K2(1 — K)z]s, (7.10)

and 0 < K < 1. (It should be noted that in the mean-field limit the critical value of
K is K, = 1.) These asymptotic representations for L (K) can also be derived directly
from (7.6) by using known results for the generalized Laguerre polynomial (Erdélyi
1960). In the critical region |[K—1| € 1 the uniform asymptotic formulae (7.7) and
(7.9) reduce to . , ,

L, (K) ~ 23073 Ai[25(K — 1) n3], (7.11)

as n—> o0, and K - 14. It is, of course, possible to obtain higher-order asymptotic
representations for L, (K). For example, by taking the limit o — oo in (4.25) we find
that

L, (K,) ~ 250 5 [AL (0) {1 +5&n 2+ ..} + 220 AV (0)n 5 {1 — 222 4 ...}], (7.12)

as 7> 00.
It follows from the theory of orthogonal polynomials (Szegdé 1939) that the
generalized Laguerre polynomial L{’(x) has n simple zeros {x,(n);v =1,2,...,n}

which are all located in the real interval 0 < x < 4(n+1). We shall enumerate these
zeros in ascending order with

x(n) < xy(n) < ... < @y(n). (7.13)
From these results and equation (7.6) it is clear that L, (K) has n—1 simple zeros
K, (n) = (4n) 2, (n—1), (7.14)

wherev = 1,2, ..., (n—1), which all lie in the real interval 0 < K < 1. Accurate values
for the zeros z,(n) have been given by Rabinowitz & Weiss (1959) for n = 4,8, 12 and
16.

The asymptotic behaviour of the zeros K, (n) which are close to K, can be
established by taking the mean-field limit in equation (6.17). This procedure yields
the expansion

=K, n) ~ |a, <2n>-%[1 — 3 4,0) |aulm(2n>“2m/3], (7.15)
m=1

as n—> 00, with 1 < v <€ n. Expressions for the coefficients 4,,(v) in (7.15) are given in

Appendix 7 for m < 7. In order to determine the asymptotic behaviour of the zeros

K, (n) which are close to K = 0 we take the mean-field limit in (5.19) and apply the

standard integral representation

. 2z (/2
J1(2)=?f cos (zcos ) sin?6 d6, (7.16)

0
where J,(2) denotes a Bessel function of the first kind. Hence we obtain

(-1

ST

J,(4K3n), (7.17)

Phil. Trans. R. Soc. Lond. A (1991)
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as n—> o0 and K0+ It follows directly from (7.17) that
K, (n) ~ g5 (4n)2+ ..., (7.18)

as n—> o0, with 1 <» <n, where j, , denotes the vth positive zero of the Bessel
function J,(z). The extensive work of Tricomi (1949) on the asymptotic properties of
generalized Laguerre polynomials leads to the higher-order representation

K, (n) ~ g} ,(4n) 2 (L4555 ,(4n) " + ... ], (7.19)

as n— 00, with 1 <v < n.
Finally, the application of the mean-field limit to equation (6.24) yields the simple
formula
p(K) = n(2/m) K31 —K)E, (7.20)

where p(K) is the density of the zeros {K,(n);v =1,2,..., (n—1)} in the interval
(0,1) as n— c0. ,

It is hoped to give a more detailed direct analysis of the mean-field case and a proof
of the formula (7.6) in a further publication.

We thank Professor C. Domb and Professor D.S. Gaunt for their continued interest and
encouragement in this work. One of us (S.S.M.) is grateful to the SERC for the award of a research
studentship.

Appendix 1. Coefficients {, (o) in expansion (4.22)

Golo) =1,

§1(U) 10 ( _10)7

&y(0) = gekiao (135, —980s, +4206),

&(o) = 2520000 3(s, — 5105, + 90235, — 25 220),

8.(0) = sossioans o1 (139s, — 440 440s, + 24 1986765, — 216 1205205, + 469 124 674),
¢(0) = srsrsaisovoaao (2038, — 3621 670s, + 554 8204955, — 12216489 480s,

+71705103270s, — 132533 683 620),
Eo(0) = smsrasannonst (s — 1935360, + 788 781 2065, — 38 184064 800s,
+485334 126 8155, —2 137 854437 6005, -+ 3546 706 131 220),
(o) = ssssrmoissasnso (1078, — 114241705, + 12127675 769s,
— 1213520646820, + 30019 362 356 9475, — 261 751 756 885 750s,
+935747 888636 7455, — 1 438480569 166 200).

Appendix 2. Coefficients 4{"(o) in expansion (4.23)

AD(0) = 550°(28, — 2703, — 1669, — 2790),

AD(0) = — 1o (575, — 138605, — 172 2475, — 561 330s, — 805 858),

AP (0) = mapatrorso (118685, — 26654555, — 38977 160s, — 1800290705,
—411044570s, —534614730),

AP (0) = — rerartaomono (4422 469, — 938 504 700s, — 15789 6498915,
—92960471100s; — 2897022640355, — 549169 924 800s, — 675238 158 350).

Phil. Trans. R. Soc. Lond. A (1991)
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Appendix 3. Coefficients B{”(c) in expansion (4.24)
S50 (3s, 4 1055, +206),

+ 165240920, + 123 390 3625, + 12993 110),
BO(0) = syereisoo000 (855 0595, + 33 450 8375, + 261528 066s,

+9636007855, + 31228795335, + 1560582 170s, — 1 295586 948),
BO(0) = — sessrraimsoonanst” (46512230965, + 190 894 563 2355,

+ 1798775523922, + 8392429860 410s, + 20267774 931 066,

+84069 131 634 525, + 28 290 848 235 260s, — 70332 679 325 300).

Appendix 4. Coefficients B{"(c) in expansion (4.24)

B{Y(0) = — symb050° (10865, + 33150, + 40114305, + 30 942 600s,
+88221985s, +122512650),

BP(0) = 1rsrsri000" (99875, + 589 T85s, + 69 246 1225, + 661 434 550s,
+2543061355s,+5313468475s, + 6726 215440),

BP(0) = — rogsrsirsoooosc (12005 5295, + 898 177 320, + 102669 170 228s,
+1159827471545s,+5525008930484s, +14851116077 800s,
+25703282239015s,+ 30637747717 150),

BY(0) = syrmsarsiesoooonet™ (15 741056 484s, + 1309038 3920255,
+147819155295892s,+ 1926 816851 124 900s,
+11141680413455547s,4+ 37190071296 634 900s,

+ 80753202156 926 6543, + 123663 928 844 824 375s,
4141476414 843946 030).

Appendix 5. Coefficients /(" (o) in expansion (4.34)
HO(0) = — 530050 (36655 + 39005, + 840 2055, + 6 621 2255, + 18983 7855,
+26397150),
HO(0) = grrastarooso® (826 601, + 15071 8055, + 3 085 150 1565, + 28832 630 400s,
+ 1087209889655, +224 411904 6755, + 282897 175 820),
HO(0) = — ropsrmrisrsosonst” (2 103829 834s, + 49 307 4147205, + 9040407 603 063,
+ 100223811466 945s, + 469761 360 635639 5, + 1247 843 285 160 300s,

+2142736841210440s, + 2546786643866 150).
Phil. Trans. R. Soc. Lond. A (1991)
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Appendix 6. Coefficients ¢, (o, v) in expansion (6.17)
Qu(,v) = —Fo(s;—10),
Qy(0,v) = — 55550 (38, + 1405, —494) — (305, + 10505, +2060) |a,| %],
Qs(0,v) = — 5525550 (235, — 908, + 125695, — 27 180)
— (208, + 5400s, + 188060s, + 370 800) |a,| ],
Q,(0,v) = — 55505505000 [ (9475, — 30805, — 279 2125, + 3378 7605, — 6050 318)
+ (— 17008, + 1925005, + 5 169 950s, — 57557 500s, — 128481 700) |a,| %],

—

§ > Q,(0, V) = — srgsbor o0 [ (98795, — 27 9505, — 695 6055, — 29621 800s,

®) : +171013790s, — 281 487700) + (— 30 300, + 611 000s, + 61727 5005,
2 + 11762140005, — 1847 966 000s, — 6 267 794 000) |a,|

E 8 + (2215 6205, — 3861 000s, + 5241 000 600s, + 40 460 706 000s,

v +114401 7237005, + 158 363634 000) || %],

Qs(0, V) = — srssrsiroosooao | (604 5235, — 1 528 3805, — 21 000 3625, + 119 618 100s,
— 10456 192 1555, + 42740 296 2005, — 65 165 374.540) + (— 28378005,
+19073250s, + 961283 5755, + 14529296 250s, + 542 670 649 500s,

— 810899775005, — 1 366 830 193 750) |a,| = + (180 824 4355,
+2066733900s, + 1297968 1097355, + 18733 396 200 750s,
+ 94895 108894 0255, + 231 484 291 557 750s,

+308031 394967 450) |a,| ],

Q.(0,v) = — pramossrissoooooso [(11 1929895, — 25744 630s, — 250 790 577s,
+1202217220s, + 58 375 335 2695, — 841 918809 450s,
+2808 1803496155, — 4032517942 600)

+ (— 74804840, + 182056 4005, + 14440952 520s,

— 1474880696005, — 3 106 416 369 640s, + 43 405 320414 000s,
+9244 660 894 6005, — 89230802920 000) |a,|

+ (9901958656, + 198839724805, + 71 166592304 592,

PHILOSOPHICAL
TRANSACTIONS
OF

/an \

— 4 +1035789 381594 880s, + 7052340272301 7765,
:é +26529214 867027 200s, + 57 391 969 879492 9605,
S E +73895 444 874809 600) |a,|~°].
28]
ﬁ 5 Appendix 7. Coefficients 4,,(v) in expansion (7.15)
E 8 4,(v) =3,
29 A,(v) = 135(1—10]a| 3)_,‘
o) A3(v) = 7575(23 —20la,|7%),
gg ! A,(v) = 5ot (947 — 1700]a,| ),
8§ 0 Ay(v) = sramers(3293 — 10 100]a, |~ + 738 540|a,| ¢,
:=_'§ Phil. Trans. R. Soc. Lond. A (1991)
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A¢(v) = oreroeas (604523 —2837800]a, | + 180824 435|a,| %),

A,(v) = oseritesosss(11 192989 — 74 804.840]a, |8 + 9901 958 656]a,|°).
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